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Abstract 

Amino acid sequences are known to constantly mutate and diverge unless there is a limiting 

condition that makes such a change deleterious. The few existing algorithms that can  be applied to find 

such contiguous approximate pattern mining have drawbacks like poor scalability, lack of guarantees in 

finding the pattern, and difficulty in adapting to other applications. In this paper, we present a new 

algorithm called  Constraint  Based  Frequent Motif Mining (CBFMM). CBFMM is a flexible Frequent  

Pattern-tree-based algorithm  that  can be used to find frequent patterns with a variety of definitions of 

motif (pattern) models. They can play an active role in protein and nucleotide pattern mining, which 

ensure in identification of potentiating malfunction and disease. Therefore, insights  into  any aspect of 

the repeats – be it structure, function or evolution – would prove to be of some importance.  This study 

aims to address the relationship between protein sequence and its  three-  dimensional structure, by 

examining if large cryptic sequence repeats  have  the  same  structure. We have tested the proposed 

algorithm on biological domains. The conducted comparative study demonstrates the applicability and 

effectiveness  of  the  proposed  algorithm. 
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I. INTRODUCTION 

 
The approximate subsequence mining problem is of particular importance in computational 

biology, where the challenge is to detect short sequences, usually of length 6-  15, that occur frequently in 

a given set of DNA or protein sequences. These short sequences  can provide clues regarding the 

locations of so called “regulatory regions,”  which  are important repeated patterns along the biological 

sequence. The repeated occurrences of these short sequences are not always identical, and some copies of 

these sequences may differ from others in a few positions. A repeat is defined as two or more contiguous 

segments of amino acid (three or more) residues with identical and similar sequence. When such repeats 

are in high-complexity regions, they are called „cryptic‟ [9]. Although low-complexity repeats are 

essential for evolutionary analysis and comprise a large section of the eukaryotic genome, high-

complexity repeats are usually associated with a particular structure or function. This  study considers 

large cryptic repeats comprising eight or more residues, as [26] fixed  the  length of a moderate-sized 

repeat as being between five and eight amino acids. The study of repeats is crucial because all but 5–6% 

of the high eukaryotic genome is repetitive  [25]. Internal protein repeats are observed to be associated 

with structural motifs or domains. It is evolutionarily more „economical‟ to evolve complex structures 

such as multiple domains by using „modular plug-ins‟ [22] to fulfill a specific function. Furthermore, 

longer repeats  normally act to enhance the stability of the native fold of the protein and, while small 

repeats interact with each other, larger repeats may either interact or remain isolated like beads on a string 

[22]. Three prominent reviews on repeats are those of [22], [11] and [33], and they concentrate on the 

relationship between structural repeats and their primary structure along with the characteristics of 

protein families. In [33] discuss the evolution  of  repeats  as  modules in the proteins. It is mentioned that 
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the number of repeats in a protein can vary between proteins, implying that the loss or gain of repeats is 

very rapid in evolution. 

The remainder of the paper is organized as follows: Section 2 presents related works  and Section 

3 describes our model. In section 4, we  present optimization strategy for our  model and in Section 5 

contains our experimental results. Section 6 contains our conclusions. 

II. PREVIOUS WORK 

 
There is a vast amount of literature on mining databases  for frequent  pattern  [30],  [17], [47]. 

The problem of mining for subsequence was introduced in [29].  Subsequence mining has several 

applications, and many algorithms like [23], [48], and [36] have been proposed to find patterns in the 

presence of noise. However, they primarily focus on subsequence mining, while we focus on contiguous 

patterns. A host of techniques have been developed have been developed to find sequence in a time series 

database that are similar to a given query sequence [29], [3], [31], [49]. The existing algorithm [5], [14], 

[20], [42], [24] requires the user to specify the repetition and patterns occurring  with  that  repetition,  

otherwise which look for all possible repetitions in the time series. Some algorithms are classified based 

on the detection type of repetition for symbol, sequence or segment. Another algorithm that finds 

frequent trends in time series data was proposed in [1]. However, this algorithm is also limited to a simple 

mismatch based noise model. In addition, this is a probabilistic algorithm, and is not always guaranteed to 

find all existing patterns. The algorithms specified in [34], [35], [39], [13], looks for all possible 

repetitions by considering  the range. COVN [34] fails to perform well when the time series contains  

insertion  and deletion noise. WARP [35] can detect segment repetition; it cannot find symbol or sequence 

repetition. Sheng et al. [6], [8] developed algorithm based on ParPer [21] to detect repeated patterns in a 

section of the time series; their algorithm requires the user to  provide  the  expected repetition value. 

COVN, WARP and ParPer are augmented to look for all possible repetitions, and which last till the very 

end of the time series. Cheung [7] used FP tree similar  to STNR [13] which is not beneficial in terms of 

growth of tree. Huang and Chang [28] and STNR [13] presented their algorithm for finding repeated 

patterns, with allowable range along the time axis. Both finds all type of repetition by utilizing the time  

tolerance  window and  could function when noise is present. STNR [13] can detect patterns which are 

repeated only    in a subsection of the time series. Repeated check in STNR last for all the positions of a 

particular pattern, which in our algorithm is been reduced. 

Several   approaches   described  in  the  literature  handle   structured   motif  extraction 

problem [3], [2] and repetition among subsection of the time series. However, our approach described in 

this paper is capable of handling both motif extraction and reporting all type of repetition. In this paper, 

we present a flexible algorithm that handles general extended structured motif extraction problem and 

uses CBFMM to build Consensus tree. CBFMM is capable of reporting all types of repetitions with or 

without the presence of noise in the data    up to a certain level. We believe that this is an interesting 

problem since it allows mining for useful motif patterns with all type of repetition,  without requiring 

specific knowledge about  the characteristics of the resulting motif. In this paper, we present a new model 

that is very general and applicable in many emerging applications. We demonstrate the power and 

flexibility of this model by applying it to data sets from several real applications. We describe   a novel 

motif mining algorithm called CBFMM that uses a concurrent traversal of FP trees to efficiently explore 

the space of all motifs. We present a comparison of CBFMM with several existing  algorithms  (COVN  

[34],  WARP  [35],  STNR  [13],  ParPer[21]).  CBFMM  never misses any matches (as opposed to 

some of these methods that apply heuristics). In fact, we show that CBFMM is able to identify many true 

biological  motifs that existing algorithms  miss. We show that our algorithm is scalable, accurate, and 

often faster than existing methods by more than an order of magnitude. We present an algorithm that uses  

CBFMM  as  a  building block and can mine combinations of simple approximate motifs under relaxed 

constraints. 
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III. CONCLUSION 

 
In this paper, we have presented a novel algorithm that uses FP tree as underlying structure. The 

algorithm can detect symbol, sequence and segment repetition as  well  as  present the patterns that are 

repeated. It can also find repetition within a subsection of the biological data. It can detect the redundant 

repetitions which are pruned; before calculating confidence which in turn saves a significant amount of 

time. We took an initial step towards  and understanding the constraints in the conservation of amino acid 

sequences by analyzing large cryptic identical and similar repeats. CBFMM is also superior to motif  

finding  algorithms used in computational biology. We also presented experiments which show that 

CBFMM can scale to handle motif mining tasks that are much larger than attempted before.  Our 

algorithm runs in O (k. N) in the worst case. In future, we are trying to extend our algorithm‟s working on 

online repetition detection. The algorithm to be experimented with streaming data using disk based tree 

[25]. 
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